

Generation of Merged Radar-Lidar Data Products during the IMPACTS 2020 Field Campaign

Discussion of Figures

intensifying wintertime cyclone moving over the Delmarva Peninsula. highly sensitive and quickly attenuated datasets and also those with lower sensitivity threshold and reduced attenuation. shown to be consistent with P-3 liquid and ice water content measurements at 3.9 km.

Stephen D. Nicholls^{1,2}, John E. Yorks², Matt McLinden³, and Gerald M. Heymsfield² Science Systems and Applications, Inc, Greenbelt, MD, ² Earth Sciences Division-Atmospheres, NASA-Goddard Space Flight Center, Greenbelt, MD

• All data, figures, and processes shown within the grey boxes depict an overall flow diagram of our data processing algorithm, which starts from the raw ER-2 level 1B data products and ends with the production of our normalized, composite figures (power conversion still under development). • All shown data is from a coincident ER-2/P-3 overpass (1525 – 1550 UTC 7 Feb. 2020) over central New York State flying from east to west.

• All data within the grey boxes originates from ER-2 radar and lidar data, whereas data in the blue box is from the P-3 cloud probes. The February 7th IMPACTS mission targeted an intense, north-south oriented precipitation band located in the northwestern quadrant of a rapidly

Raw radar and lidar data show a pronounced increase in echo top height, change in cloud particle phase (liquid to ice), and a sharp decline in bright band height (radar only) as the aircraft transitioned from the warm sector and into the cold sector of the stationary front around 1535 UTC. • Normalized ER-2 radar-lidar products provide a more complete picture of storm structure because these composite figures include data from both

The normalized signal figures show considerably higher (~1 km) cloud top heights than seen in any radar products due to CPL's higher sensitivity. • Higher values of normalized depolarization (brighter colors) denote an increased probability of ice-phase particles, which is an assumption that is

Summary

• We have further refined our method for generating composite normalized data products from ER-2 Level 1B datasets. • The algorithm now supports all four of GSFC's high-altitude radars and the CPL lidar. • Dataset composites can now be mixed and matched to include any combination of radar and lidar data. • Our latest innovation is to apply normalized depolarization products with goal of achieving remote detection of hydrometeor properties (i.e., cloud/droplet particle phase, crystal habit, particle size, etc.) • Compositing various products offers advantage of mitigating individual sensitivity and attenuation limitations of individual products to obtain a more complete illustration of storm structure. • Favorable initial comparisons between the P-3 cloud probe measurements and the ER-2 depolarization retrievals show promise that the remote retrieval of hydrometeor properties is possible from the ER-2, but more work is needed. • On-going work will continue use both the ER-2 and P-3 datasets to determine the potentially applications of radar-lidar composite products, generate power conversion-based composite products, and train a supervised machine learning model to make probabilistic predictions of cloud/droplet particle properties using ER-2 data only.

