Microphysical Properties within Regions of Enhanced Dual-Frequency Ratio: Results from the 2022 Deployment

1. Motivation

- * Multi-frequency radar measurements can improve the retrieval of snowfall properties from satellite observations
- * Dual-Frequency Ratio (DFR): Reflectivity difference between two radars operating at different frequencies
- * Related to characteristic size D_m, used to retrieve particle size distribution (PSD) parameters, and influenced by microphysical processes

Research Questions

- How are these observations related to banded precipitation structures?
- 3. [NEW FOR 2022] How do the preliminary results from the 2022 deployment compare to 2020?

- ☆ W-band (CRS), Ku- and Ka-band (HIWRAP), Xband (EXRAD) reflectivity Z_e corrected for attenuation and matched to P-3 location * Aircraft must be within 4 km and separated by
- no more than 3 min
- # PSDs: 2D-S (0.15–1.4 mm, 10 μ m resolution), HVPS (1.4–30 mm, 150 µm resolution) every 5 s
- Time-varying mass-dimension relationship for * deriving bulk microphysical properties
- ✤ Variable DFR threshold used to investigate whether DFR related to precipitation structures (Fig. 1)

Fig. 2 2-km Z_e from NEXRAD mosaic valid at 2157 UTC 05 Feb 2020. ER-2 track in black and snowbands as magenta ovals.

the purple line in Fig. 3.

ER-2 and P-3 sampled banded precipitation structures (Figs. 2, 3) ***** Larger D_m, smaller p_e and N_w within regions of enhanced DFR consistent with an enhanced aggregation process (Fig. 4) # Less dense particles and lower N_w \rightarrow IWC may not be very large

Joseph A. Finlon, Lynn A. McMurdie Department of Atmospheric Sciences, University of Washington

L. What can multi-frequency radar measurements tell us about the microphysics in snowstorms?

Ka-band DFR (DFR_{Ku-Ka}) along the P-3 flight track.

3. Regions of Enhanced DFR at Flight Level

4. IMPACTS Cases Analyzed			
Date	Description	# Obs	
25 Jan	Warm occluded front with generating cells	462	
01 Feb	Warm oceanic frontal system over southern Atlantic with GPM overpass	185	
05 Feb	Shallow frontal zone over Midwest with snowbands	678	
07 Feb	Heavy snow in a rapidly deepening cyclone over NE	418	
25 Feb	Generating cells with supercooled water in a NW sector of a Midwest Storm	585	
19 Jan	Warm-frontal bands and generating cells in an Alberta Clipper in Canada	702	
29 Jan	Departing strong nor'easter sampled over Plymouth, MA and southern ME	165	
04 Feb	Cold front with freezing rain and snow over New England and NY	646	
08 Feb	GPM overpass over low in the Gulf of Maine with snowbands NW of low	45	
17 Feb	Deepening snowstorm over Chicago, IL	1134	
19 Feb	Cold Alberta Clipper over Québec	139	
Table 1 List of coordinated flights used in the DFR analysis and the number of 5-s collocated observations for each case. TOTAL 5159			

* Preliminary results promising and suggest conclusions from Finlon et al. (2022) may hold for cases sampled during 2022 deployment * Further QC of radar data (i.e., absolute calibration) and microphysics data (i.e., shattering removal)

from 2022 deployment are needed

* Running neural network radar retrievals on 2022 cases may add further insight to the microphysics and how they relate to banded precipitation structures

References

Finlon, J. A., L. A. McMurdie, and R. J. Chase, 2022: Investigation of Microphysical Properties within Regions of Enhanced Dual-Frequency Ratio During the IMPACTS Field Campaign. J. Atmos. Sci. (published online ahead of print 2022), https://doi.org/10.1175/JAS-D-21-0311.1. Acknowledgements

Fig. 5 Boxplots of (a) HWIRAP Z _{Ku} , (b)
HIWRAP DFR _{Ku-Ka} , (c) D_m , (d) ρ_e ,
(e) log ₁₀ (N _w), and (f) IWC for regions
within (solid) and outside of (dashed)
enhanced DFR for each coordinated flight.
The second s

2022 vs. 2020

Similar results in regions of enhanced DFR: ⋕ Larger D_m Lower ρ_{e} and N_{w}

☆ Less change in IWC

% Difference (Enhanced vs. Other)				
	2020 Only	2020 +		
	(Finlon et al. 2022)	2022		
D _m	58.0%	59.8%		
ρ _e	-36.6%	-32.7%		
N _w	-74.2%	-79.3%		
IWC	-0.9	12.9%		

This work is funded by the NASA grant 80NSSC19K0338

Contact

jfinlon@uw.edu https://github.com/joefinlon