

1.Introduction

- IMPACTS involved two NASA aircraft - the in situ P-3B and the remote sensing ER-2 - observing winter storms during Jan-Feb 2020
- The Advanced Microwave Precipitation Radiometer (AMPR) is a four-frequency passive microwave radiometer that is sensitive to clouds and precipitation
- The High Altitude Imaging Wind and Rain Airborne Profiler (HIWRAP) is a dual-wavelength Ka/Ku-band radar co-located with AMPR on the ER-2

2. Data and Methods

- Data collected from the 2020 IMPACTS field campaign
- AMPR and HIWRAP observations analyzed together, focusing on nadir curtain
- In level flight legs with a bright band, slope was calculated monotonically from the endpoints of the bright band
- Linear regression performed between bright-band altitude and AMPR brightness temperature (Tb), and HIWRAP near-surface reflectivity and AMPR Tb
- HRRR data used to conduct fine-scale analysis to identify source of bright-band slope

Analysis of AMPR and HIWRAP Data in Two Cases From IMPACTS

Amanda Richter¹, Timothy Lang², Paul Meyer²

¹University of Alabama in Huntsville ²NASA Marshall Space Flight Center

3. Case #1: February 1

• Low-altitude reflectivity less correlated with AMPR nadir Tb

37	85	all
 0.697	0.317	0.787
0.079	0.018	0.451

5. Conclusions and Future Work

 Slanted bright band detected in AMPR nadir brightness temperature on February 1

• Analysis of other flight legs suggests this correlation is meaningful, though more observations of bright band heterogeneity desired

• The 5 February over-land flight featured observations of a rain-snow transition and indicated AMPR's ability to provide information about both the land surface and the precipitating clouds

• Looking at additional flight legs/cases, as well as geophysical retrievals over water with noise-filtered AMPR observations